Changing your lens on sprint training

A brief history of sprint training

• You either have it or you don’t...follow the money
OK...maybe we can build it

The basics and the myths
Here is the research that correlates Olympic lifts with acceleration

Running drills- Mach drills, Running Dynamics
Success of the Eastern Block Countries
The science

JUST LIKE IN WAR, IT COMES DOWN TO LOGISTICS, FEAR AND TRADITION
The Basics

• Top end speed is important and can be improved
• But needs to be monitored in a short, non-fatigued session.

How did I change the lens?

• Look where others haven’t
 • Feet
 • Front view
MIT’s Planar Bipedal robot
5.9 m/s
MABEL 6.8 mph

Boston Dynamics
Here’s the gold...

• If the power is the limitation, then at max velocity, the drag force cancels the thrust force, leaving no thrust to accelerate the system. If the limitation is strength, then at maximum speed the loading on some components equals its strength, and any increase in speed would cause it to break. If the limitation is stability, then at the max speed, some equilibrating mechanisms is at the stability limit, and at a higher speed the system would tumble out of control.

• How Fast Can a Robot Run, Jeff Koechling
CHAPTER 3 BONE AND Joints

SECTION A CALF AND ANKLE

701 POPLEUS
707 GASTROCNEMUS, Medial Head
709 GASTROCNEMUS, Lateral Head
714 PLANTARIS
718 SOLLECS, Medial Head
720 SOLLECS, Lateral Head
722 TIBIALIS POSTERIOR, Third Division
724 TIBIALIS POSTERIOR, Fibular Division
726 PERONAS LONGUS, Common Division
728 PERONAS BREVIS, Fibular Division
730 PERONAS TERTIUS
732 TIBIALIS ANTERIOR, Supramalleolar Division
734 TIBIALIS ANTERIOR, Dorsiflexion Division

SECTION B TOE
901 FLORIZZLHALLUCIS LONGUS, Third Division
902 FLORIZZLHALLUCIS LONGUS, Flexor Division
904 EXTENSOR DIGITORUM LONGUS, Supramalleolar Division
906 EXTENSOR DIGITORUM LONGUS, Medial Division

SECTION III HANDS

940 EXTRACTUS PLANTARIS, Medial Division
944 EXTRACTUS PLANTARIS, Lateral Division
946 FLEXOR DIGITIVM MEMPIS, Medial Division
948 FLEXOR DIGITIVM MEMPIS, Lateral Division
950 FLEXOR DIGITIVM PÆSIS, Second (Flexor Digito Quarti Brevis)
952 FLEXOR DIGITIVM PÆSIS, Third (Flexor Digito Quinti Brevis)
954 FLEXOR DIGITIVM PÆSIS, Fourth (Flexor Digito Sexti Brevis)
956 FLEXOR DIGITIVM PÆSIS, Fifth (Flexor Digito Septimi Brevis)
958 FLEXOR DIGITIVM PÆSIS, Sixth (Flexor Digito Octavi Brevis)
960 FLEXOR DIGITIVM PÆSIS, Seventh (Flexor Digito Noni Brevis)
962 RADIALIS PLANTARIS, Medial Division
964 RADIALIS PLANTARIS, Lateral Division

SECTION IV MUSCLES OF THE FOOT

966 ABDUCTOR DIGITUS PEDIS, SECOND (Interossei Dorsalis Pedis, Second Division)
968 ABDUCTOR DIGITUS PEDIS, THIRD (Interossei Dorsalis Pedis, Third Division)
970 ABDUCTOR DIGITUS PEDIS, FOURTH (Interossei Dorsales Pedis, Fourth Division)
972 ABDUCTOR DIGITUS PEDIS, FIFTH (Flexor Digito Quarti Brevis)
974 ABDUCTOR DIGITUS MINIMI PEDIS
976 EXTENSOR DIGITORUM BREVIS

Speed Profiles for Male Sprinters

A little extra force = a lot of extra speed!

<table>
<thead>
<tr>
<th>Below Average</th>
<th>Good</th>
<th>National-Class</th>
<th>World-Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Speed: 9.0 m/s</td>
<td>Top Speed: 10.0 m/s</td>
<td>Top Speed: 11.0 m/s</td>
<td>Top Speed: 12.0 m/s</td>
</tr>
<tr>
<td>10m Fly Time: 1.10 s</td>
<td>10m Fly Time: 1.00 s</td>
<td>10m Fly Time: 0.91 s</td>
<td>10m Fly Time: 0.83 s</td>
</tr>
<tr>
<td>Contact Time: 0.110 s</td>
<td>Contact Time: 0.100 s</td>
<td>Contact Time: 0.091 s</td>
<td>Contact Time: 0.083 s</td>
</tr>
</tbody>
</table>

Data based on competition values for athlete that is 5'10", 180 lbs.
Forces in second half of contact are ~same

The Force Signature for Speed
The difference separating sub-elites from elites:
Understanding the effect of Touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation, Bezodis, N., Sports Biomechanics, (2015)

• “Beneficial effects of reducing ankle joint dorsiflexion during early stance on early acceleration performance and identified the need for coaches to increase ankle plantar flexor strength...”

• Slightly greater than 90 degrees

THE FOOT

• CONTACT– The stiffer the ankle complex is at contact, the more energy can be transferred up and down the line

• For example, poor big toe function will dissipate 34% of the energy that the foot/ankle complex absorbs which is about 75% of the total energy in a sprint
Tendon elastic energy in the human ankle plantar-flexors and its role with increased running speed
Adrian Lai, Anthony, Schache, J of Experimental Biology, 2014

• MTU of gastroc and soleus was responsible for 75% of positive work at 8 m/s

Muscles in Isometric state and MTU active

White muscle fiber stripe fiber with mTU grey tendon black MTU
Muscle length changes with velocity

Top normalized length bottom contraction velocity shows as speed picks up- more MTU and Tendon over muscle- big calf distance runner

Dynamic contribution analysis on the propulsion mechanism of sprinters during initial acceleration phase, Koike, S., 33rd International conference on Biomechanics in sport, 7/15

• Ankle dorsiflexion torque was the largest contributor to the generation or whole body propulsion
Support leg joint contributions to center of mass acceleration during 3 phases of a maximal sprint, von Lieres, H. conference paper

- MTP (metatarsal phalangeal joint) and ankle showed the largest contributions to vertical and horizontal acceleration

When account for MPJ...

- Ankle- 35% higher
- Knee- 40% lower
- Hip- 9% higher
So why not popular?

Which logo do you want on your shirt?

Bench Press Club

Isometric Plantar flexion club for 700 N
Let’s move...

• Stand up
• Go into a calf raise
• Which way does your foot break
 • Over 4 toes?
 • Big toe?
Good foot/bad foot

ISO foot patterns

• ISO Position has a 15 degree carryover in each direction

• Knee straight
• Knee bent
• Big toe

• Hip position and placement of weight key
Can you?

• 1. Stand on 2 feet with pressure on your tripod?
• 2. Do the same on one foot?
• 3. Pull your toes off the ground and balance?
• 4. Close your eyes? Ears?
• 5. Ankle squat and hold that foot position?
• 6. Go up on your big toe

The anatomical arrangement of muscle and tendon enhances limb versatility and locomotor performance, Wilson, A., Philosopical transctions of the Royal Society, (2011)

• Tendon stiffness is tuned to optimize fiber shortening velocity and minimize muscle activation
• To role of distal muscles may therefore not be to directly perform work but to modulate the power production of proximal muscles by functioning as a tuneable series of elasticity or tendon-Cocontractions
Stumble reflex

• “At the spinal cord level, there is a coupling between muscle and its antagonist (and an inhibition of one another).” Both in a trip or gait.

Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion.
Forssberg H., 1979

• Tripping cats
• Perturbations in the stumble reflex cycle cause ”brisker flexion”
• Making your body think it is going to fall or trip will trick it into tensing
• Body organization: The goal the body has is to organize its parts to do the task that has been set out. In an athletic sense, this would incorporate navigation, slack control with co-contractions and a target. In order to challenge this process, we can make things happen faster so body has to prepare faster or fall (managing reflexes). When challenged the body will learn to stiffen faster to prepare for the unexpected. This translates to the actual movement because the body will find that it works better when it is stiffer and stable.

SO

• Overspeed works because it forces a stiffer spring (which results in higher Ground Reactionary Force) in a manner that the body accepts and assimilates due to stumble reflexes and motor learning skill development.
Even cooler thought of the day...

- The peak forces that occur in a reflexive support during sprinting, such as stumble and crossed extensor, are greater than those that can be created by “maximum voluntary contraction”.
- Kyrolainen, H. et al. Changes in muscle activity with increased running speed” J. of Sports Sciences, 2005

Overspeed

- Bands
- Unweighted
- Tows
- Elevated surfaces
The Acute Kinematic Effects of Sprinting with Motorized Assistance
Kenneth Clark, Micheal Cahill, Christian Korfist

- Theory: assisted sprinting could acutely enhance maximum velocity via mechanisms normally observed with swifter running, and without causing aberrant changes to the runner’s gait, this mode of training may have potential to elicit long term improvements in top speed.
- Assisted max velocity would increase due to stride length rather than rate
- Assisted run would have decreased contact times and increased measure of vertical force but no appreciable changes in flight times, swing times or contact lengths
<table>
<thead>
<tr>
<th></th>
<th>Velocity (m/s)</th>
<th>Contact Time (s)</th>
<th>Flight Time (s)</th>
<th>Step Time (s)</th>
<th>Swing Time (s)</th>
<th>Step Rate (Hz)</th>
<th>Step Length (m)</th>
<th>Contact Length (m)</th>
<th>Flight Length (m)</th>
<th>Vertical Force (BW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unassisted Mean</td>
<td>10.0</td>
<td>0.100</td>
<td>0.112</td>
<td>0.213</td>
<td>0.325</td>
<td>4.72</td>
<td>2.11</td>
<td>1.00</td>
<td>1.12</td>
<td>2.13</td>
</tr>
<tr>
<td>Unassisted SD</td>
<td>0.3</td>
<td>0.011</td>
<td>0.007</td>
<td>0.013</td>
<td>0.018</td>
<td>0.29</td>
<td>0.09</td>
<td>0.09</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>Assisted Mean</td>
<td>10.9*</td>
<td>0.095*</td>
<td>0.116†</td>
<td>0.211</td>
<td>0.328</td>
<td>4.75</td>
<td>2.30*</td>
<td>1.03*</td>
<td>1.26*</td>
<td>2.24*</td>
</tr>
<tr>
<td>Assisted SD</td>
<td>0.4</td>
<td>0.010</td>
<td>0.006</td>
<td>0.014</td>
<td>0.019</td>
<td>0.32</td>
<td>0.09</td>
<td>0.09</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>% Difference</td>
<td>9.4%</td>
<td>-5.2%</td>
<td>3.4%</td>
<td>-0.6%</td>
<td>0.8%</td>
<td>0.7%</td>
<td>8.7%</td>
<td>3.7%</td>
<td>13.1%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Effect Size</td>
<td>3.28 (v. large)</td>
<td>0.49 (small)</td>
<td>0.58 (small)</td>
<td>0.10 (trivial)</td>
<td>0.15 (trivial)</td>
<td>0.11 (trivial)</td>
<td>2.04 (v. large)</td>
<td>0.40 (small)</td>
<td>2.62 (v. large)</td>
<td>0.76 (moderate)</td>
</tr>
</tbody>
</table>
• Faster max velocities were achieved due to increased stride length and improved vertical forces

 • Shows minimal changes in contact times and postural changes
 • Mean vertical forces was larger when towed than when unassisted

Conclusion

• Although step rate did not change, there were small but significant decreases in contact time, indicating *increased vertical force* and decreased duty factor ratio during the assisted conditions. This is consistent with normal mechanics of increased max velocity,
Toe pop exercises

• Needs to be alternating or else no stumble reflex and becomes bag hop exercises
Raise the ground with **mats**

![Image of driveway with mats](image)

mats

![Image of mats and color swatches](image)
Once energy is absorbed, it needs a direction

- Ankle rocker or its 8 ugly sisters give it direction
Common cheat patterns

- Turn foot in
- Turn foot out
- Bounce over the top—bouncy gait
 - Collapse arch
 - Swing hips
 - Outside of foot
 - Throw body weight forward
Turn foot in

out
Bouncy

Spin out through big toe
Anterior tilt

Hips or knees swing wide
Throw weight forward
Exercises

- Wind shield wipers
- Single leg squats
- Shuffle walks
- Ankle jumps
- Overspeed/French Contrast
- Uphill Toe pops

- Add to all exercises in weight room
- (Squats, lunges)
Once ankle rocks, goes to forefoot rocker

(a) Heel rocker (first) (b) Ankle rocker (second) (c) Forefoot rocker (third)

Toe-off

- Toe flexors transmit energy produced by hip/leg extensors
- No impact on top end speed or vertical jumps but big impact on horizontal jumps and acceleration

If missing big toe...
Drill for toe off

• ISO toe holds
• Stair walks
• No arm runs
• Single leg cleans
• Single leg hops down a line with stick on back

To sum up

• The more functional the foot is, the more power the brain will allow it to have

• Can squat 1000lbs, but if foot doesn’t function properly, brain will protect it and limit the power so you can get away from the grizzly bear
The Lateral Chain/toe off

LATERAL CHAIN
Crossover Gait
Possibly add coordination to weight room

- 4 way hip machine - properly
- Hip tips
- Steps
- Swiss ball complex
Swiss Hip Hike

Unstable surface
Bad Foot/ Good foot

More weight room lateral chain work
Add complexity

4 WAY
• Hip proprioceptive feedback influences the control of mediolateral stability during human walking.

Roden-Reynolds DC1, Walker MH1, Wasserman CR1, Dean JC2.

• Instability on ground in fast fashion
OVERLOAD
co-ordination

• Concepts to apply
 • Time/pressure: forces better co-contractions which result in stiffer contacts and more power (overspeed, uneven surfaces)
 • Reflex patterns (scissoring action, toe off)
 • Perturbations (Waterbags, hanging weight, hanging banded weight, uneven surfaces)
Association of Step Width with Accelerated Sprinting Performance and Ground Reaction Force
Ryu Nagahara, Et al (2017)

- Steps 1-4 12"
- Steps 5-8 8"
- Steps 9-12 5"
- Steps 13-16 4"
- Steps 17-22 3"

- Ranges 10.5-10.9

My Bad algebra and overspeed

- (Motor Learning Skills x Stumble Reflex)
- +
- (Ken Clark’s 2 Mass model to determine Ground Reactive Force
- +
- Hypothesis based off overspeed research)
- ______________________________
Basic Motor Learning Skills

101

- Complexity of the body make it necessary to restrict degrees of movement. We cannot handle all of the possibilities of movement (unless you are Dontae Fowler).
- We deal with all of the possibilities we divide movement into attractors and fluctuators.

Too much for a weekend!!! Where are the Margaritas??

- **Attractors** - basic movement patterns that stay the same regardless of situation
 - •+
- **Fluctuators** - movement that responds and changes to specific situations or environments

- The sum...equals...drum roll please
Wait for it

• The brain can command control through the attractor patterns without having to micromanage *(fast brain, slow brain)* - these are the basics of movement that can be broken down to **apply to all individuals**. To strengthen the attractors, you can change the **ENVIRONMENT, ORGANISM** or intensity *(controlled fluctuators)*.

• Finished, shot, throw, punch kick, etc

• The more usable the attractor is, the more willing the brain is to use it. It will eventually override previous attractor that are not as efficient.
So, what does this do for me and where is the overspeed stuff?

• If we challenge environment, the body has to respond in a more perfect manner. Making things happen faster is the ultimate in challenging the environment or else...
Sorry, Charlie Francis fans... at the right speed, no deceleration

• “No one fast trains this way. This is not an argument and there have been some improvements in technology. And know, a lot of people are using...quite a bit

• Foot strike out in front with increased contact times
 • We didn’t find that to be the case with out 14 sprinters ranging from 11.0 -10.39

To sum up

• Motor skill- challenge environment to force body to react in more efficient manner

• Stumble reflex challenge the body to stiffen faster with the knowledge that it could fall

• Clark- lower limb responsible for a lot of the work going on in sprinting and going faster improves power output or GRF in applicable fashion
• Body organization: The goal the body has is to organize its parts to do the task that has been set out. In an athletic sense, this would incorporate navigation, slack control with co-contractions and a target. In order to challenge this process, we can make things happen faster so body has to prepare faster or fall (managing reflexes). When challenged the body will learn to stiffen faster to prepare for the unexpected. This translates to the actual movement because the body will find that it works better when it is stiffer and stable.

• Overspeed works because it forces a stiffer spring (which results in higher Ground Reactionary Force) in a manner that the body accepts and assimilates due to stumble reflexes and motor learning skill development.
How can we apply it to our 3 day workout?

1080 tow video
Great! I want to stay married so I don’t have a 1080 Sprint.
Extreme overspeed

• No 1080 needed.

• So... to challenge the reflexes we can do a bunch of things:
 • Overspeed
 • Raise the ground
 • Soften the ground

• Can apply to hurdling and jumping as well
Glenn Messemer

- #1 Tues 8/29 1.31 // 1.29 // 1.30 // AVG 1.30 **1.29** was starting point
- #2 Tues 9/5 1.31 // 1.26 // 1.29 // 1.27 // AVG 1.28
- #3 Tues 9/12 1.26 // 1.26 // 1.25 // 1.24 // AVG 1.25
- #4 Mon 9/18 1.29 // 1.29 // 1.23 // 1.21 // AVG 1.26 **These are not overspeed pulls**
 - The first four sessions had 0 out of 18 reps at 1.20 or below

 - **1/18 reps at 1.22 or below**
 - 2/18 reps at 1.23 or below
 - PR 1.21

- #5 Wed 9/20 OVERSPEED 1.20 // 1.16 // UNRESISTED 1.20
- #6 Sun 9/24 1.21 // 1.17 // 1.19 // AVG 1.19
- #7 Sun 10/8 1.21 // 1.19 // AVG 1.21
- #8 Fri 10/13 1.19 // 1.20 // 1.23 // 1.19 // AVG 1.19
- #9 Wed 10/18 1.20 // 1.22 // 1.19 // 1.16 // AVG 1.20
 - The next four sessions (and including our one unresisted rep following overspeed) had 12 out of 18 reps at 1.20 or below

 - **17/18 reps at 1.22 or below**
 - 18/18 reps at 1.23 or below

- **2 reps at a new PR of 1.16!**

Toe pop exercises

- Needs to be alternating or else no stumble reflex and becomes bag hop exercises
Raise the ground with mats

mats
Cool stuff…but we are just football and Catapult research shows there is no need for top end speed

The National Football League Combine 40 yd Dash: How Important is Maximum Velocity?
Ken Clark, et. al

• Athletes of different sprinting capabilities accelerate in a comparable manner relative to their Max Velocity - max velocity serves as an upper threshold to acceleration
• After 15 yds is top end speed in football
Top End Speed

- Fly 10,20,30
- Overspeed training
- Sum of all parts- how to eliminate faulty movement patterns on Sat
What can we do? How can we change our athletes?

Overload
the system with weight?

- Can’t really match pressure body takes in weight room
- Calves 7x’s
- Hamstrings 5x’s
- 2.5xs bodyweight on impact in all less than .1 sec

- Biomechanical loading of the Achilles Tendon during normal locomotion
- PV Komi, S Fukashiro, 1992
Effect of Single vs. Multiple joint ballistic resistance performance upon Vertical Jump
Terje Dalen, et al., 2013

Table 1. Performance variables at the pre- and post test for the multi and single joint training group (Mean±SD).

<table>
<thead>
<tr>
<th>Group</th>
<th>Multi joint training group (n=7)</th>
<th>Single joint training group (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pre-test</td>
<td>post test</td>
</tr>
<tr>
<td>Jumping height (cm)</td>
<td>37.9±5.6</td>
<td>39.6±4.7†</td>
</tr>
<tr>
<td>1-RM weight (kg)</td>
<td>119±36</td>
<td>130±36*</td>
</tr>
<tr>
<td>Peak force (N)</td>
<td>1790±437</td>
<td>1924±442*</td>
</tr>
<tr>
<td>Peak velocity (m/s)</td>
<td>3.19±0.26</td>
<td>3.30±0.30</td>
</tr>
<tr>
<td>Peak power (W)</td>
<td>3197±553</td>
<td>3440±997*</td>
</tr>
<tr>
<td>Time to peak force (s)</td>
<td>0.137±0.047</td>
<td>0.156±0.022*</td>
</tr>
<tr>
<td>Time to peak velocity (s)</td>
<td>0.293±0.058</td>
<td>0.254±0.024*</td>
</tr>
<tr>
<td>Time to peak power (s)</td>
<td>0.204±0.048</td>
<td>0.067±0.016*</td>
</tr>
</tbody>
</table>

Note: *Significantly different from pre-test, p<0.05. †Significantly different from single joint training group, p<0.05.

No Calf raises, leg extension, leg curls