# The relationship between states, speedstrength and performance in change of direction tasks

NOVEMBER 2017



AUT SPORTS PERFORMANCE RESEARCH INSTITUTE NEW ZEALAND



## **Change of Direction (COD) Performance**





## **Thesis Flowchart**

How can performance in COD tasks be enhanced in rugby union players?

#### Literature review

Chapter 2: Physical characteristics and performance in change of direction tasks: a brief review and training considerations



#### **Cross-sectional research**

Chapter 3: Study 1 -The relationship between multidirectional jumping and performance in change of direction tasks

Chapter 4: Study 2 – The relationship between performance in multidirectional jumping and change of direction tasks in individual- and team-sport players

Chapter 5: Study 3 – The relationship between performance in multidirectional jumping and change of direction tasks in individual- and team-sport players





## **Thesis Flowchart (cont.)**

#### **Experimental research**

Chapter 6: Study 4 – The influence of eccentric strength training on performance in change of direction tasks in adolescent rugby union players

Chapter 7: Study 5 – The acute influence of accentuated jump training on performance in change of direction tasks in adolescent rugby union players



**Chapter 8 - Practical applications and conclusions** 





# Literature Review Bourgeois et al., 2017 (JASC)



Figure 2.1. Continuum of mechanical determinants of changing sprint direction.

Bartlett, 2007; Holmberg, 2009)

Video analysis, and Posture, Placement and Intention



);

# COD and Multidirectional Jumping (MDJ) Tasks

Bourgeois et al., 2017 (JSCR)



# Strength, Speed-strength and Performance in COD Tasks

**Cross-section Analysis of Football Code Athletes (***n* = 12)

- □ 180° and 45° COD performance
  - Sprint times
- CMJ and DJ (unilateral; vertical, horizontal and lateral)
  - Displacements and stance-phase kinetics
- Isometric and isokinetic unilateral strength

#### **Findings**

- CMJ and DJ *impulse and vertical take-off velocity* correlated with 180° and 45° COD performance
- Vertical and horizontal CMJ and DJ measures shared task-specific association
- □ Eccentric force during CMJ and DJ correlated with COD performance
- □ 45° COD tasks superior in distinguishing Forwards and Backs



#### Effects of a Six-week Strength Training Programme on COD Performance in Youth Rugby Athletes Bourgeois et al., 2017 (Sports)

**Strength Training Intervention** 

**Eccentric phase-emphasis condition** (EPE, weeks 1 to 6, *n* = 12)

- Posttest 1 (week 7), Rest (weeks 8 and 9), Posttest 2 (week 10)
- Washout period (weeks 11 to 13)

□ Conventional condition (weeks 15 to 20, *n* = 6)

Posttest 1 (week 21), Rest (weeks 22 and 23), Posttest 2 (week 24)

#### Performance measures

Strength: relative isometric unilateral peak force production



#### Short-term Accentuated Jump Training and Performance in COD Tasks in Adolescent Rugby Union Players

Jump Training Intervention

□ Accentuated jump condition (AJT, weeks 1 to 4, *n* = 8)

 Posttest 1 (week 5), Washout period (weeks 6 and 7), Posttest 2 (week 8)

**Control condition** (CON, weeks 1 to 4, n = 8)

- Same as above
- Performance measures
  - JUMP: CMJ, DJ and MDJ displacements and stance-phase kinetics

ACUTE response

# observed

(m-vi) HCIVIJ, VDJ and IVI vertical take-off velocit

- **COD Benefits** 
  - **180** = (m-vl) *approach a*

<u>SLOW</u> experienced greater benefit

lse.

# **PRACTICAL APPLICATION**

### Consider *sport-* and *position-specific* criterion COD task(s)

Posture, Placement and Intention; Individual-specific changes; Time?

# MDJ can be used to train, assess and predict 180° and 45° COD performance

Sufficient familiarisation; establish reliability

### Mechanical determinants are task-specific

- $\geq$  90°  $\rightarrow$  Fy and Fz;  $\leq$  90°  $\rightarrow$  Fx and Fz
- MDJ GCT:distance reactive index?

### Mode-specific response to strength training

- Conventional: more acute
- Eccentric-phase emphasis: retention and development; ≤ 90° COD tasks?

10 sessions of accentuated jump training influenced jump and COD measures

- DJ measures most improved
- Accentuated jump training beneficial post-COD-step task(s)?



# QUESTIONS